HOME > ◎体積・弧長・媒介変数 > ■極方程式に関する問題疑問点のお問い合わせやご注文などは、admin@K-Kyogoku.comへお願いします。ただし、恐れ入りますが、■御注文・お問い合わせの手順にしたがってお願い致しします。
見たことのない問題を限りなく減らすために:
東大、京大、慶応大/医、順天堂大/医などを受験される方や、難問まで全てを対策したい方には「完全対策」(全6巻)をお勧めします。
国立大、有名私立医大・有名私大理系の受験する方には「直前対策」(全3巻)をお勧めします。
その他、東大・京大・東工大・横浜市大/医などは大学別の解説書を用意しています。●現在販売している最強の入試対策書籍
=2020年1月22日から26日まで、当サイトは休止します。=

■極方程式の問題

次に示すのは一般的に「リマソン曲線」と呼ばれるもので、極方程式が比較的簡単なので、入試問題によく取り上げられる主題です。曲線が極方程式で与えられている場合、面積、回転体体積や弧長積分は、極座標に変換して計算しますが、面積だけは極方程式専用の計算公式があります。

リマソン曲線の極方程式とグラフ

  • r=2+cosθ(2009年京大理系)
  • r=1+cosθ(2009年京大理系甲、2016年神戸大理系5)
  • r=2(1+cost)(2011年名古屋市大)



[入試問題]
[1] 極方程式が描く曲線の面積の問題
[B]極方程式が囲む面積を求める問題(2011年横浜市大/医3)

[B]デカルトの葉が囲む面積を求める問題(2015年横浜市大/医12)


[2] 極方程式が描く曲線の回転体の体積の問題(TypeB5
[D]原点と曲線両端を結ぶ図形の回転体の体積(2012年慶応大/医4)

[C]リマソン曲線の回転体の体積の問題(2009年京大/理系5)

[C]カージオイドの回転体の体積の問題(2011年名古屋市大/芸術4)


[3] 極方程式による弧長積分の問題
極座標・極方程式で表された曲線以外、すなわち直交座標で表された曲線の弧長問題も本項で解説します。
[例題]
[A]極方程式で表された曲線の弧長問題(2005年熊本大理系4)

[入試問題]
[C]カージオイドの極方程式から面積や弧長を求める問題(2016年神戸大理系4

[C]カージオイド曲線の弧長の最大値・最小値の問題(2019年早大/理工5)

[E]弧長積分と極方程式の題意がわかりにくい難問(2018年慶応大/理工5)